久久久久国产-人人看人人看人做人人模-野花日本大全免费观看6高清版-在线a电影|www.gdjiasi.com

您的位置: 中國幕墻網(wǎng) > 技術熱點 > 新聞正文

雙支座鋁合金立柱計算分析方法對比

來源:2019年會論文集  作者:黃慶文 熊志強  日期:2019-4-3
頁面功能 [字體: ] [ 打印 ] [ 投稿 ] [ 評論 ] [ 轉(zhuǎn)發(fā) ] [ 啄木鳥 ]
  摘要:為了解框架幕墻雙支座立柱模型簡化計算的可靠性,作者考慮立柱側(cè)壁與支座螺栓和套芯的作用影響,進行了型材立柱、支座螺栓和立柱套芯結(jié)構的有限元模擬分析,取得更為接近真實的結(jié)果。以實際案例分析,將慣用理論計算和有限元分析結(jié)果對比,找出應力和變形差異,發(fā)現(xiàn)雙支立柱的真實作用機理。研究表明實際的支座螺栓和插芯連接都為半剛或接近全剛性,理論簡化為鉸接偏于保守。結(jié)論將為幕墻設計提供參考。
  關鍵詞:幕墻立柱;雙支座;接觸;有限元

  本篇文章內(nèi)容由[中國幕墻網(wǎng)www.gdjiasi.com]編輯部整理發(fā)布:

  在幕墻立柱設計當中,《上海市建筑幕墻工程技術規(guī)程》DGJ08-56-2012[1] 第12.5.1條表明“應根據(jù)立柱的實際受力和支承條件,分別按單跨梁、雙跨梁或多跨梁計算由自重、風荷載地震作用產(chǎn)生的彎矩(詞條“彎矩”由行業(yè)大百科提供)、扭矩和剪力(詞條“剪力”由行業(yè)大百科提供),并按其支承條件計算軸向力(詞條“軸向力”由行業(yè)大百科提供)”,即幕墻立柱設計是由主體結(jié)構、地理環(huán)境和自身構造決定的。在大跨度層高(≥4500mm)、大載荷情況下,立柱上端常采用雙支座形式,分為長短兩跨以滿足結(jié)構要求,計算模型是按照雙跨梁。此模型對真實構造的簡化處理,主要集中在頂部和中部的支座螺栓和底部立柱插接套芯部分,雙跨梁將復雜的梁與支座面接觸關系簡化成單純鉸接作用。

  目前,貴州大學土木學院對雙跨梁支座約束機理有一些初步結(jié)果,特別是對于立柱—插芯之間的連接構造對計算模型的影響問題做了分析探討,得出立柱—插芯連接處屬于半剛性或接近全剛性的結(jié)論[2]。但目前對雙支座螺栓的固定連接還未有明確的研究結(jié)果,也就無法了解該部位的真實作用狀態(tài)和機理,及其對整理立柱響應的貢獻,為此文中進行了這方面研究的拓展和補充。

  《鋁合金結(jié)構設計規(guī)范》GB 50429-2007[3]第4.2.4條指出“框架結(jié)構(詞條“框架結(jié)構”由行業(yè)大百科提供)內(nèi)力分析可采用一階彈性分析”。在考慮對比不同算法之前有必要明確理論和有限元方法的前提假設。簡而言之,理論計算涉及到材料力學基本假設,即平截面(詞條“截面”由行業(yè)大百科提供)(幾何線性)、胡克定律(材料線性)和邊界不變性(邊界線性),整體剛度(詞條“剛度”由行業(yè)大百科提供)保持不變;此次有限元分析是按線性、彈性的(幾何與材料線性)和支座接觸(邊界非線性)來模擬,整體剛度將由于接觸關系而變化。

  1 雙跨梁理論模型

  作為對立柱雙跨梁橫向作用效應(詞條“作用效應”由行業(yè)大百科提供)的比較,風荷載和地震作用比自重更具有問題相關性。因此縱向的立柱及附屬構件的自重荷載,作為理論分析暫不考慮。同時為了研究的針對性,模型對比均不考慮立柱構件的局部和整體穩(wěn)定計算。

  1.1. 總體信息

  某工程位于廣州市 (7度設防,設計地震基本加速度0.10 g),地面粗糙度C類,建筑高60m,層間高度為4.5 m,結(jié)構梁高650 mm,框架式幕墻, 8+12A+8 mm中空玻璃分格(B×H)1.0×1.5 m,預埋件側(cè)埋,立柱采用雙支座,受結(jié)構梁高度限制,立柱短跨為500 mm,長跨4000 mm,如組圖 1

  基本風壓:0.5 kPa;

  風荷載標準值(詞條“標準值”由行業(yè)大百科提供):Wk=1.7 kPa;(墻角區(qū))

  玻璃幕墻構件自重:g=0.5 kPa;

  地震作用:qEH=5×0.08×0.5=0.2 kPa;

  荷載標準值:w=1.7 + 0.5×0.2 = 1.8 kPa

  荷載設計值:W=1.4×1×1.7 + 1.3×0.5×0.2 = 2.51 kPa;

  幕墻立柱跨度:L=4.5 m,短跨 L1=0.5 m,長跨 L2=4 m,短跨比 b=1/9;

  立柱材性:鋁合金型材(詞條“鋁合金型材”由行業(yè)大百科提供)6063-T6,E=70000 Mpa;

  立柱截面:慣性矩I=1992814 m4,抵抗矩 W=31533 mm3,凈距 S=1992800 mm3。

  1.2. 理論計算

(a)雙支座立柱模型

  1.2.1. 荷載

(b)荷載分布

  1.2.2. 彎矩圖(kN.m)

  荷載設計組合2.51kN/m

(c)立柱彎矩

  1.2.3. 剪力圖(kN)

  荷載設計組合2.51kN/m

(d)立柱剪力

  1.2.4. 撓度

  荷載標準組合1.8kN/m

(e)立柱撓度

  1.3. 單元驗算

  圖中數(shù)值自上而下分別表示:最大剪應力與設計強度比值;最大正應力與設計強度比值;最大穩(wěn)定應力與設計比值

(f)立柱強度驗算比

圖1 某工程案例立柱雙跨梁理論計算(a)~(f)

  1.3.1. 內(nèi)力范圍、最大撓度

  (a)、內(nèi)力范圍:彎矩設計值 -3.02~4.47 kN.m

  剪力設計值 -3.90~6.14 kN

  (b)、最大撓度:最大撓度20.5mm,最大撓跨比1/195

  (撓度允許值《合金結(jié)構設計規(guī)范》(GB 50429-2007) Tab 4.4.1 按1/180)

  1.3.2. 強度應力

  最大剪應力 τ = Vmax × S / I / tw

  = 6.14 × 19277 / 1992800 / 5.0 × 1000

  = 11.9 MPa ≤ fv = 85 MPa 滿足!

  上邊緣最大正應力 σ上 = Mmax / γ / W= 4.47 / 1.05 / 31533 × 1e6  = 135.0 MPa ≤ f = 150 MPa 滿足!

  下邊緣最大正應力 σ = Mmax / γ / W= 4.47 / 1.05 / 31533 × 1e6

  = 135.0 MPa ≤ f = 150 MPa 滿足!

  連續(xù)梁驗算結(jié)論: 滿 足 !

  1.3.3. 穩(wěn)定應力

  整體穩(wěn)定系數(shù)φb = 1.00

  最大壓應力 σ = Mmax / φb / W

  = 4.47 / 1.00 / 31533 × 1e6

  = 141.8 MPa ≤ f = 150 MPa 滿足!

  該跨驗算結(jié)論:滿足!

  2 簡支梁理論模型

  從圖1(e)雙跨梁長短跨撓度對比發(fā)現(xiàn),其撓度響應主要都表現(xiàn)在長跨段,短跨在雙支座約束下?lián)隙然究梢院雎浴R虼俗鳛檠a充對比模型I,擬取長跨段作為分析對象按簡支梁進行理論計算。

  2.1. 理論計算

(a)長跨段簡支梁理論模型

  2.1.1. 荷載

(b)荷載分布

  2.1.2. 彎矩圖(kN.m)

  荷載設計組合2.51kN/m

(c)立柱彎矩

  2.1.3. 剪力圖(kN)

  荷載設計組合2.51kN/m

(d)立柱剪力

  2.1.4. 撓度

  荷載標準組合1.8kN/m

11

(e)立柱撓度

圖2 簡支梁I理論計算(a)~(e)

  2.2. 強度應力

  鑒于此模型僅作為對比項,不作具體驗算。

  2.2.1. 內(nèi)力范圍、最大撓度

  (a)、內(nèi)力范圍:彎矩設計值 -5.02~0.00 kN.m

  剪力設計值 -5.02~5.02 kN

  (b)、最大撓度:最大撓度43.01mm,最大撓跨比1/93

  2.2.2. 強度應力

  最大剪應力 τ = Vmax × S / I / tw

  = 5.02 × 19277 / 1992800 / 5.0 × 1000

  = 9.7 MPa

  上邊緣最大正應力 σ上 = Mmax / γ上 / W上

  = 5.02 / 1.05 / 31533 × 1e6

  = 151.6 MPa

  下邊緣最大正應力 σ下 = Mmax / γ下 / W下

  = 5.02 / 1.05 / 31533 × 1e6

  = 151.6 MPa

  2.2.3. 穩(wěn)定應力

  整體穩(wěn)定系數(shù)φb = 1.00

  最大壓應力 σ = Mmax / φb / W

  = 5.02 / 1.00 / 31533 × 1e6

  = 159.1 MPa

  3 一端固支一端簡支理論模型

  作為補充對比模型Ⅱ,取長跨段作為分析對象,將短跨縮減為固接端進行理論計算。

  3.1. 理論計算

(a)長跨段理論模型

  3.1.1. 荷載

(b)荷載分布

  3.1.2. 彎矩圖(kN.m)

  荷載設計組合2.51kN/m

(c)立柱彎矩

  3.1.3. 剪力圖(kN)

  荷載設計組合2.51kN/m

(d)立柱剪力

  3.1.4. 撓度

  荷載標準組合1.8kN/m

(e)立柱撓度

圖3 雙跨梁長跨段一端固支一端簡支Ⅱ理論計算(a)~(e)

  3.2. 強度應力

  鑒于此模型僅作為對比項,不作具體驗算。

  3.2.1. 內(nèi)力范圍、最大撓度

  (a)、內(nèi)力范圍:彎矩設計值 -2.79~5.02 kN.m

  剪力設計值 -3.76~6.27 kN

  (b)、最大撓度:最大撓度17.89mm,最大撓跨比1/224

  3.2.2. 強度應力

  最大剪應力 τ = Vmax × S / I / tw

  = 6.27 × 19277 / 1992800 / 5.0 × 1000

  = 12.1 MPa

  上邊緣最大正應力 σ上 = Mmax / γ上 / W上

  = 5.02 / 1.05 / 31533 × 1e6

  = 151.6 MPa

  下邊緣最大正應力 σ下 = Mmax / γ下 / W下

  = 5.02 / 1.05 / 31533 × 1e6

  = 151.6 MPa

  3.2.3. 穩(wěn)定應力

  整體穩(wěn)定系數(shù)φb = 1.00

  最大壓應力 σ = Mmax / φb / W

  = 5.02 / 1.00 / 31533 × 1e6

  = 159.1 MPa

  4 有限元模型

  4.1. 仿真分析

  結(jié)構有限元分析軟件采用solidThinking Inspire,擁有Altair先進的OptiStruct優(yōu)化求解器,在一個友好易用的軟件環(huán)境中提供“仿真和驅(qū)動設計”的創(chuàng)新工具。根據(jù)給定的設計空間、材料屬性以及受力需求,Inspire可以自動進行自適應網(wǎng)格劃分和計算,簡化了單元劃分和邊界設置,減少整個分析流程的時間。

圖4 雙跨梁立柱支座節(jié)點

圖5 支座螺栓與底部套芯

  根據(jù)該幕墻工程立柱支座節(jié)點,如圖4,其特征是,支座采用了2xM12不銹鋼A4-70螺栓由雙角鋼夾持同立柱連接,底部采用的250mm長鋁型材套芯將上下立柱插接;螺栓間距40mm,帶30x4mm鋼墊片,角鋼和立柱中支座處開長圓孔。為反映上述典型構造,研究必須建立在構件實體及其配合關系上。因此如圖5,有限元模型按照設計構造尺寸定義了型材、支座螺栓、圓孔、長孔和角鋼墊片,在套芯處同樣設置了螺栓支座以作固定;考慮研究目標是螺栓和套芯與立柱的約束關系,在此將墊片與角鋼作為整體,重點處理螺桿(詞條“螺桿”由行業(yè)大百科提供)與立柱孔壁的承壓接觸以及套芯肋線與立柱內(nèi)壁擠壓接觸設置。

  經(jīng)過等效加載,將計算橫向線荷載標準值轉(zhuǎn)換為有限元立柱表面荷載,獲得圖6~7 變形和應力結(jié)果。可知跨中最大位移14.3mm,中支座附近立柱上下邊緣最大拉壓應力標準值90.6Mpa/-86.7Mpa,設計值為126.3Mpa/-120.8Mpa。較小于理論模型的最大撓度20.5mm(差異25.9%),最大中支座應力±141.8Mpa(差異14.8%);有限元分析整體呈現(xiàn)出比雙跨簡支梁更好的剛度。局部來看,透過圖8發(fā)現(xiàn)同一支座的兩顆螺栓處在不同的拉壓區(qū)域,呈現(xiàn)一對力偶的形態(tài),抵抗中支座最大彎曲(詞條“彎曲”由行業(yè)大百科提供)內(nèi)力,造成該長圓孔局部螺栓接觸應力達到最大的244.6Mpa,超過了立柱型材6063一T6的屈服強度150Mpa;同樣支座套芯的應力云圖9觀察到其頂面應力分布呈現(xiàn)出前后明顯的拉壓分區(qū),表明套芯在約束著立柱的相對轉(zhuǎn)動,并且最大應力達到220Mpa,也出現(xiàn)了局部的屈服。

圖6 最大撓度14.29mm

圖7 最大拉壓應力標準值90.6Mpa/-86.7Mpa

圖8 支座螺栓應力區(qū)域分布

圖9 套芯應力區(qū)域分布

  4.2. 結(jié)果對比

  通過有限元結(jié)果,驗證了真實支座抗彎剛度的特性,為進一步了解立柱雙支座轉(zhuǎn)動剛度的大小,此處再以分析所得數(shù)據(jù),即雙跨梁、長跨段簡支梁模型(I)、長跨段一端固支一端簡支梁模型(Ⅱ)和雙跨梁有限元模型來分別與雙跨梁模型對比界定,如表1所示。

表1 雙跨梁計算分析結(jié)果對比

  結(jié)果顯示,按慣用理論計算相比有限元分析更為保守(撓度和應力)。以支座鉸接模型I的計算結(jié)果,撓度相比雙跨梁誤差大101%,顯然是由于短跨對長跨約束的貢獻,將梁抗彎剛度提高了一倍;取模型Ⅱ計算,變形差異為12.7%,應力誤差在12.2%水平,介于雙跨梁和有限元之間,但更趨近于雙跨梁的理論結(jié)果,說明了固定端的約束要比短跨稍微更強一些;而實際雙螺栓支座是帶有一定轉(zhuǎn)動剛度的,若考慮長圓孔對螺栓的轉(zhuǎn)動約束,短跨支座可接近完全剛接的約束極限;再通過模型Ⅱ和有限元比較,發(fā)現(xiàn)套芯也有很強的轉(zhuǎn)動剛度,甚至接近于半固端。因此通過有限元模擬和對比分析,解釋了雙跨梁真實的約束邊界,為工程設計師提供了理論參考。

  5 結(jié)論

  針對幕墻中的雙支座立柱形態(tài),進行了慣常理論計算與有限元模擬分析,對比了撓度和應力,結(jié)果差異相對較大,原因是實際雙螺栓支座具有一定的轉(zhuǎn)動剛度,在立柱連接點形成抵抗力偶,而不像鉸接點一樣自由轉(zhuǎn)動,使得短跨支座趨于固端;另外立柱插芯連接方式具有很強的轉(zhuǎn)動剛性,套芯與立柱內(nèi)壁緊密擠壓,抵抗撬動,能限制一定的立柱變形,近似于半固接點。

  [1] DGJ08-56-2012《上海市建筑幕墻工程技術規(guī)程》[S]

  [2]李紹朗,肖建春,封建波,王澤曦,杜玉濤,吳夏燕.幕墻立柱連接處的接觸力學分析[J].貴州大學學報(自然科學版),2016,33(01):117-121.

  [3] GB50429-2007《鋁合金結(jié)構設計規(guī)范》[S]

門窗幕墻第一手資訊! 上中國幕墻網(wǎng) news.www.gdjiasi.com 手機訪問地址 3g.www.gdjiasi.com

專家介紹

 黃慶文

鋁門窗幕墻委員會專家組

工作單位:廣東世紀達建設集團有限公司

技術職稱:高級工程師

專業(yè):個人業(yè)績 主編了《點支式玻璃幕墻工程技術規(guī)程》CECS127-2001,參編了《玻璃幕墻工程技術規(guī)范》JGJ102-2003、國標《建筑幕墻》、《建筑玻璃采光頂》、《既有建筑幕墻鑒定與加固規(guī)程》、《鋁合金結(jié)構設計規(guī)范》、《采光頂與金屬屋面工程技術規(guī)范》、《建筑幕墻檢測標準》、《鋁合金門窗》等標準; 參與了《點支式玻璃幕墻支承裝置》及《鋼拉索柱型接頭》等標準的審查工作; 發(fā)表過《點式全玻璃幕墻結(jié)構設計簡介》(鋁門窗幕墻行業(yè)年會論文集)、《南京奧林匹克體育中心游泳館單層索網(wǎng)采光頂?shù)脑O計》(鋁門窗幕墻行業(yè)年會論文集)、《提倡個性設計,爭做精品工程》(鋁門窗幕墻行業(yè)年會論文集)、《高強單片防火玻璃在建筑中的應用》(《建筑學報》2002.2)等多篇論文; 參與發(fā)明了四項實用新型專利——鋼桁架端部支座頭萬向調(diào)節(jié)機構、背栓式金屬板干掛幕墻、幕墻用可調(diào)角度轉(zhuǎn)角型材系統(tǒng)、木質(zhì)格珊裝飾系統(tǒng)。

專長:建筑幕墻、屋面設計與施工管理、鋼結(jié)構設計

原文地址:http://www.52mqw.com/info/2019-4-3/45878-1.htm
此文由 中國幕墻網(wǎng) 點擊查看 www.www.gdjiasi.com 收集整理,未經(jīng)許可不得轉(zhuǎn)載!
我要評論 (已有*人參與評論)
上一篇:中國西部國際博覽城18×58米大跨空間玻璃幕墻系統(tǒng)設計解析
    
【回到頂部】
為了幫助建筑門窗幕墻行業(yè)產(chǎn)業(yè)鏈上、下游企業(yè),特別是廣大的會員單位,更好的認清行業(yè)發(fā)展趨勢和市場現(xiàn)狀,從而提升自身產(chǎn)品品質(zhì)及服務能力,...
[正文]  [評論]

中國幕墻網(wǎng)版權和免責聲明

版權聲明: 本網(wǎng)站所有文章版權,歸中國幕墻網(wǎng)和作者所共有,未經(jīng)允許請勿轉(zhuǎn)載。

轉(zhuǎn)載要求: 轉(zhuǎn)載的圖片或者文件,鏈接請不要盜鏈到本站,且不準打上各自站點的水印,亦不能抹去本站水印。

隱私條款: 除非特別聲明,否則文章所體現(xiàn)的任何觀點并不代表中國幕墻網(wǎng)。
本站轉(zhuǎn)載或引用文章若涉及版權問題請與我們聯(lián)系,我們立即將其刪除!

月精彩評論集錦
知識百科
月熱點新聞推薦[TOP10]
月企業(yè)關注度排名
月產(chǎn)品人氣值排名
客服電話:400-60-54100  傳真:0832-2201099 值班電話:15023154960